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This research was performed for the Aerospace Medical Research
Laboratory at Wright-Patterson Air Force Base, Ohio, under
Project/Task 723107, Technology to Define and Assess Environ-
mental Quality of Noise from Air Force Operations.
Administrative and technical monitor for this effort was Mr.

Jerry D. Speakman of the Biodynamic Environmental Branch,

Biodynamics and Bioengineering Division.

This study utilizes noise and meteorological data from the same
Project/Task and Organization as listed above. The author 4
gratefully acknowledges the guidance and helpful support of

Mr. Jerry Speakman and the assistance of Ms. Emma Wilby, BBN, who
prepared and exercised the analytical model computer programs.
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LATERAL ATTENUATION OF AIRCRAFT FLIGHT NOISE
l. INTRODUCTION

This report considers the lateral attenuation of aircraft
flight noise with emphasis on the development of computational
models for predicting aircraft noise during takeoffs and land-
ings. 1In particular, the report looks at the expected variation
in noise levels with elevation angle. Comparisons of different
models are made in terms of the differences in A-levels for a
flyover with the observer directly under the aircraft (an eleva-
tion angle of 90°) and for a flyover with the observer to one
side of the flight track (elevation angle less the 90°). Compar-
isons are made using excess sound attenuation (ESA) values
derived from theory and from field noise measurements. These are
compared with the current lateral attenuation models incorporated
in the NOISEMAP computer program (ref. 1) and the curve
recommended by the SAE in reference 2.

The next section provides a background technical discussion.
Section 3 describes the approach used in the study. The follow-

ing sections present the results, discussion and recommendations.
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2. BACKGROUND DISCUSSION

Many measurements of aircraft in flight are made with the
aircraft flight path passing over or nearly over the ground
observer. These measurements are typically adjusted for wave-
divergence (spherical spreading) and atmospheric absorption to
develop noise level predictions for different distances from the
aircraft. When the ground position is laterally displaced from
the projection of the flight path, additional attenuation may
occur due to ground effects (surface absorption and reflection),
meterological effects such as wind, temperature gradients, and
scattering by the atmosphere, and effects of the airplane instal-
lation, such as source shielding. 1In this report, this addition-

al attenuation is referred to as lateral attenuation.

The geometrical model assumed in deriving lateral attentua-
tion is shown schematically in Figure 1. Point Q on the flight
track in the ground plane lies below the flight path. Point S on
the flight path is located at the nearest distance of approach to
Point Q. Point P is displaced normal to the flight path by
lateral distance L. The distance between Point P and S is the

slant range. The elevation angle B is defined in the figure.

Consider a situation such that the airplane is at point S’
on an auxiliary flight path parallel to and above the previous
flight path, so that QS'= r, the slant range of the previous
case. In both cases, engine power setting, airplane configura-
tion and airspeed are considered to be identical. The difference
between the noise level Lo at point Q when the airplane is
flying along the auxiliary flight path and the noise level Lp
at point P at the sideline when the airplane is flying along the
original flight path is equal to Lg - Lp = A. The noise
level difference A , in decibels, is defined as the lateral
attenuation with respect to point P.
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In current aircraft noise prediction models such as NOISEMAP
and the Integrated Noise Model (INM), the total lateral attenua-
tion A is assumed to be a function of the elevation angle B
times the lateral attenuation for over ground propagation (8=0).

The latter case will be termed "excess sound attenuation,
(ESA)." Thus:

A=f, (1,8=0), £, (B) (1)

In the current NOISEMAP model, the excess sound attenuation
(B=0) is dependent upon the aircraft noise spectra and the
lateral distance. In the SAE model, currently incorporated in
INM, a single ESA curve is used which is aircraft independent but
which varies with distance.

Both the current SAE and NOISEMAP lateral attenuation models
assume that the lateral attenuation adjustment to be applied to
the basic noise data is the same when applied to maximum levels
(maximum A-levels for example) or to integrated noise measures

such as the sound exposure level.




3. ANALYSIS APPROACH

For this study, sets of sound spectrum-dependent lateral
attenuation values derived from a theoretical model and from
experimental field measurements were developed for different
elevation angles. These sets of lateral attenuation values were
applied to sets of one-third octave band spectra for different
aircraft The resulting differences in A-levels for these noise
spectra (with and without the lateral attenuation applied) were

tabulated and compared.

Nine sets of aircraft noise spectra were selected to provide
a variety of spectrum shapes representing flyover noise levels
produced by turbojet, turbofan and turboprop aircraft. Each
spectral set consisted of one-third octave band spectra at
various distances ranging from 250 feet to 31,500 feet. Eight
spectra were selected from those from reference 3, representing
typical takeoff and approach levels for the C-135A (turbojet),
C-9A (low bypass ratio turbofan), C-130H (turboprop), and F-16
(afterburner turbojet). A ninth spectral set -- that for takeoff
thrust for the Challenger 600, a business aircraft powered with a
high bypass ratio turbofan -- was also selected. These spectra
are identical to those used in the analysis of overground excess

attenuation reported in reference 4.

Three sets of theoretical ESA values were developed, all
based on the theoretical model described in detail in Appeadix A
of reference 5. An impedance value of 100 cgs rayls was selected
for the computations since this value was found to give a reason-
ably good fit for the theoretical model when compared to experi-
mental values of excess sound attenuation over a near-level

grassy surface, as described in references 4 and 5.

0 D e




Table 5. A-Level Lateral Attenuation
Based on Thecretical ESA Values

AoLEVEL B S DBIFFERENCES VS ANGLE

AVE RradE VALLIES

CY4N [SYa) ANGLF T wBELRE S
HE TGHT Vil UIF S K0 60 30 20 10 1 4 ” 2 1
400" EERTR RN ~1 ) (¥ PR .20 Q.69 Q.50 .21 .41 1.51 4,62 10.14
1500 K 0 L, 04 v. 19 0,67 [ ¥ 0,12 0,70 1.728 4,41 Q.45
400 A 0 [ 0.%9 0.75 .82 0.42 0. 65 1.83 5.31 12.07
100067 40ty " fu (U W) | O, 11 0.76 Q.66 0.95 1.77 Te 33 S.40
15w 'R 8] O, O a.12 Q.74 0,84 0,89 1.71 3.25 S.29
40" A 0 i A6 O, 86 0,86 1.23 1.82 2.9% 5.00 8.01
A-LEVEL ESA DIFFERENCES VS ANGLE
MAY IMtIM AND MINIMUM VALUES
~C FSA bt € IN DEGRE! S
HE TOHT VAL UFS 90 &0 30 20 10 S 4 x - 1

410 Q" A MAX O 0.74 1.22 1.13 1.68 1.47 1.84 3.25 7.10  13.50
MIN ) 0.17 0,22 0.36 G.07  -0.29 -0.35 0,39 .71 9.15

10007 00T A MAX QO Q.88 1.0 1.18 2,05 2.95 4.48 5. 63 .22
MIN . 0.18 0. 31 0,46 0.57 0.72 1.63 2.84 4.58
19
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4. RESULTS AND DISCUSSION
Results

Results of the analysis are summarized in Figures 5, 6 and 7, and
in Tables 5 and 6. Figure 5 shows the average A-level differences as
a function of angle for the theoretical ESA values referenced to a
microphone over a grassy surface. Figure 6 shows the average A-level
differences for ESA values referenced to a hard surface. The results
shown in Figures 5 and 6 are also tabulated in Table 5. (This table

- also shows the results for the ESA values calculated for a 1500 ft.
source height.) 1In addition, the table shows the maximum and minimum

A-level differences observed among the different noise spectra.

Figure 7 shows the A-level differences for the AMRL excess
attenuation values. These results are also tabulated in Table 6,
together with the maximum and minimum A-level differences achieved

among the different aircraft noise spectra.
Discussion

The A-level differences calculated with the theoretical ESA
values include only the reflection off a flat plane of finite
impedance and do not, of course, include any shielding effects due to
airframe geometry nor any effects due to scattering and turbulence in

propagation through a non-uniform lower atmosphere. Hence, one would
anticipate that the theoretical values would be lower than the

experimental values. And this, indeed, is the case. (See comparison
with either the SAE curves or the curves based on the experimental ESA
values.) It is clear from the theoretical model that lateral
attenuation due to reflection from the ground surface only becomes
important (exceeds approximately 2 dB) at elevation angles of less
than 5 degrees and that the attenuation due to surface reflection is

essentially negligible at higher angles.
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TABLE 4. EXPERIMENTAL (AMRL) ESA VALUES
FOR ELEVATION ANGLE ANALYSIS

EXCESS SOUND ATTENUATION IN dR

)

FREQ ANGLE IN DEGREES

HZ 0 60 30 20 10 S 4 s 2

) S0 0 0 () 1.10 2.10 4,00 S5.10 b.20 7.30

63 (o] 0 O -0.50 0.80 3.20 4,90 b6.60 8.30

. 80 0 0 0 -2.10 -1.00 2.00 4. 0% b6.07 8.10

100 O 0 Q -0,60 -0.5%5 -0.30 0.13 0.57 1.00

129 (0] 0 Q 4, 50 &.70 8.40 8.93 ?.47 10,00

160 9] 0 O 7.70 11,00 14.30 1S.77 17.23 18.70

200 Q o] Q 6.70 10,60 14.90 146.83 18.77 20,70

250 Q 0 O 3.10 7.10 12.80 16.20 19.60 23.00

. 315 Q Q Q 3.60 6.40 10,10 12.40 14.70 17,00

400 (¢ O Q 2.Q90 4,00 &. 50 8.03 ?.57 11.10

S00 Q O Q 2.10 z.20 4,60 5.33 6.07 6. 80

30 () 0 (o] 1.50 2.80 3.70 4,10 4,50 4,90

800 O 0 8] 1.50 1.90 2.80 313 3.47 Z.80

1000 0 0 O Q.90 2.00 2.90 3. 27 3.63 4,00

Il 1250 0 Q Q 1.30 1.00 1.40 1.53 1.67 1.80

1600 O (V] O 1.10 1.70 2. 20 2.97 2.93 JI.3D

20060 Q o] (8] 1.10 1.20 3.20 4,03 4.87 S.70
)
)
[ ]
o
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Average spectrum differences were provided by AMRL for angles of
2, 5, 10 and 20 degrees. Additional data for angles of 3 and 4
degrees were determined by interpolation. These experimental

values are tabulated in Table 4. These values are also shown in

Figures 2, 3 and 4 for elevation angles of 2, 5 and 10 degrees.

The sets of ESA values were then applied to the different
aircraft noise spectra, assuming flyover heights (for B= 0) of
400 ft. and 1,000 ft. A-level differences were then computed for
various angles with and without the ESA values applied to the
spectra. For a given elevation angle, the noise spectra differ
for the two assumed flyover heights. Hence, applying the same
ESA values for a given angle to the two different spectra may
result in differing A-level differences.

13
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TABLE 3. THEORETICAL ESA VALUES FOR
ELEVATION ANGLE ANALYSES

ESA RE HARD SURFACE. R 100, 400 FT REFERENCE HE]1GHT

EXCESS SDUND ATTENUATION IN dBb

FREQ ANGLE IN DEGREES
H2 20 60 30 20 10 5 4 3 2 1
: 50 15.88 10.11 3.23 2.06 1.83 2.78 3.31 4.20 5.88 10.07
! 63  11.96 19.51 5.23 3.07 2.42 3.47 4.09 S.12 7.01  11.38
1 80 3.95 7.76 9.31 4.76 3.27 4.36 &6.06 6.21 8.27 12.77
] 100 0.91 2.47 17.68 7.63 4.42 S.41 6.17 7.40 9.59 14.21
! 125 1.50 0.7t  10.48 13,05 6.10 6.74 7.53 8.83 11.10 15.81
‘ 160 10.30 3.97 3.67  13.30 8.87 8.62 9.38  10.70 13.04 17.75%
u 200 2.53 68.87 1.36 6.25 11.62 10.51 11,20 312.50 14,84 19.38
. 250 4,00 1.54 2.76 2.73 10.45 11.44 12.18 13.851 15.87 20.11
: 315 ©.83 7.25 10.73 2.27 6.48 9.78 10.81 12.35 14.85 19.00
400 4.63 3.22 2.87 7.06 3.48 6.70 7.85 9.53  12.15  16.50
S00 3.96 3.75 5.93 6.75 3.14 4.18 5.18 6.78 9.39 13.88
630 3.92 4.75 3.62 3.54 6.86 2.41 3.01 4.32 6.76 11.28
800 4,52 4.4 .26 6.63 8.72 1.92 1.62 2.32 4.37 8.7s
1000 4.43 4.86 S. 10 5.51 3.36 3.61 1.53 1.10 2.48 6.39
1250 4,71 4,78 5.29 5.11 6.20 9.8% 3.59 ©.86 1.02 4.59
1600 4,64 S.17 S.17 5.57 3.65 $.08 11.14 2.72 .15 2.64
2000 4.92 4.91 S5.43 4.95 6.07 1.39 4.19 .73 .51 1.19
2500 5.06 5.48 S5.74 S.66 4.67 6.91 0.94 .56 2.99 0.1%
3150 5.31 5.23 S. 41 5.01 4.10 1.73 6. 66 0. 50 8.0 -u.28
4000 S.34 5.50 5.44 5.20 3.71 4.25 1.2 4.50 2.37 0.71
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TABLE 2. THEORETICAL ESA VALUES FOR
ELEVATION ANGLE ANALYSES

RELATIVE ESA. R 100, 1500 REFERENCE HEIGHT

EXCESS SOUND ATTENUATION IN db

FREO ANGLE IN DEGREES
HZ 90 60 30 20 10 S 4 3 2 1
[ 50 0 -5.82 -12.67 -13.82 -14.02 -13.01 <-12.45 -11.45 -9.87 -5.98
. 63 0 7.70  -6.71 -8.86 <~9.48 -B.40 <-7.77 -6.75 -4.91 -0.79
L.’ ' 80 o 3.04 5.42  0.91 -0.58  0.52 1.22 2.35  4.34 B. 66
100 o 1.58  16.87 6.79 3.60  4.%9  5.33 6.55  B.67 13.12
! 125 0 -0.78  9.04 11.62 4.68  S.31 6.09 7.36 9.58 14.0%
160 0 -6.35 -6.61 2.99  ~1.41 -1.67 -0.93 0.37  2.63 6.89
200 o  6.38  -1.11 3.78  9.10  B.00  8.67 9.92 12.13  15.80
. 250 0 -2.45 -1.18 -1.21 6.41 7.39 e.11 9.37  11.49 14.34
- 31s 0  4.85 7.96 =-0.49  3.64 6.88 7.87 9.33  11.54 14.11
:gf- 400 0  -1.40 -1.72 2.48 ~0.94 2.00 3.11 4.71 7.06 9.97
iy 800 6  -0.20  2.01 2.80 -0.81 0.14 1.11 2.63  S5.02 8.29
:i}j 630 o 0.84 -0.27 =-0.3% 1.94 =1.60 ~1.05 0.20 2.45 5. 96
: 800 0 -0.10 0.75  2.07 4.04 -2.73 -3.06 -2.42 -0.51 3.08
1000 0 0.44 0.68 1.07  -1.17 =-1.01 =-3.09 -3.84 -2.23 1.24
; 1250 0  0.08 0.57 0.34 1.32  4.42 -1.39 -4.04 -3.87 -0.79
b 1600 o 0.53 0.48 0.82 -1.18B ©.06 4.97 -2.15 ~4.50 ~2.34
: 2000 ¢ -0.01 0.45 -0.10  0.85 -3.62 -1.0% 2.29 -4.29 -3.69
. 2500 0 0.40  0.%9 0.44 -0.60 1.08 -4.01 -0,32 -2.38 -~4.39
‘e 3150 0 -0.09  0.02 -0.40 =-1.30 ~-3.41  0.15 -4.39 -0.53 ~4.59
T 4000 0 0.1%5  0.05 ~0.1B -1.% -1.44 =3.63 -1.80 -3.16 ~4.1%
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TABLE 1. THEORETICAL ESe VAIUES FOK

ELEVATION ANGLE ANAL YSES

RELATIVE ESA. R 100, 400 FT REFERENCE HEIGHT

EXCESS SOUND ATTENUATION IN dE

FRED ANGLE IN DEGKREES
HZ S0 60 30 20 10 S 4 3
SO O -5.77 =-12.65 -13.82 -14.05 -13.10 =12.57 -11.69
63 O 7.54 -6.73 -8.90 -9.55 -8.49 -7.87 ~-6.8%
80 (Y 3.81 S.36 0.84 -0.67 0.41 1.11 2.26
100 o 1.56 16.76 6.71% 3.51 4.49 5.25 6.49
25 O -0.80 8.97 11.355 4.60 5.24 6.02 7.32
160 o -6.33 -6.63 3.00 -1.44 -1.68 -0.92 0.40
200 O 6.34 -1.16 3.72 9.10 7.99 8. 68 9.97
256 [¢] -2.47 -1.24 -1.27 6.44 7.44 8.18 9.51
315 ¢ 4.42 7.90 ~0.56 3.63 6.95 7.97 .52
400 o -1.42 -1.76 2.42 -0.95 2.07 3.22 4.89
S00 (¢} -0.21 1.96 2.79 -0.83 0.21 1.22 2.82
630 o 0.82 =-0.30 -0.38 1.94 -1.51 -0.92 0.39
800 (O -0.11 0.73 2,10 4.19 -2.460 -2.90 -2.21
1000 0 0.43 0.68 1.09 -1.06 -0.81 -2.90 -3.32
250 0 0.07 0.58 0.40 1.50 S5.12 -1.12 -3.85
1600 (o) 0.53 0.52 0.93 -0.99 G.44 6.49 -1.92
2000 o 0.00 0.51 0.03 1.15 -3.53 -0.72 3.82
2500 o 0.42 0.68 0.60 -0.39 1.85 -4.13 0.49
3150 O =0.08 0.10 -0.30 -1.21 -3.58 1.35 -4.81
4000 (¢} 0.16 0.10 -0.14 -1.63 -1.09 -4.07 -0.64
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=10.00
-4.95%
4,32
B8.67
9.60
2.74
12,231
11.86
12.02
7.%92
5.43
2.83
-0.16
~1.94
-3.69
~4.49
-4.40
-2.07
2.72
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- Assuming a microphone height of 1.5m, sets of ESA values were
Lﬁ computed for the following conditions:
1. A source located at a height of 400 ft. over a grassy
{ surface with ESA values at the different elevation angles
%iﬂ relative to the ESA for a microphone directly under the

source,
2. As above, except the source height was 1500 ft.

f 3. As in (1) (i.e., source height of 400 ft.), but with all
ESA values referenced to the ESA for an infinitely hard

surface.

These ESA values are tabulated in Tables 1, 2 and 3.
Inspection of the tables will show that the ESA values for source
. heights of 400 ft. and 1500 ft. are nearly the same, hence only
fg, the results for ESA values computed for a height of 400 ft. will
be shown in report figures. Plots of the ESA values for the 400
ft. source height at elevation angles of 2, 5 and 10 degrees are

shown in Figures 2, 3 and 4.

1 The set of experimental ESA values are based upon differences
in noise spectra measured at various angles compared to the
spectra measured directly under the aircraft (after adjustment

] for spherical spreading and air absorption). These data were

. @
I acquired and analyzed by AMRL (as described in reference 6) for
| various level flight flyovers of the following aircraft:
t
| ]
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. A-LEVEL ESA DIFFERENCES VS ANGLE

Table 6. A-Level Lateral Attenuation
Based on Exverimental (AMRL) ESi Values

20
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'u AVERAGE VALUES-AMRL
s
N A/C  ESA ANGLE IN DEGREES
HEIGHT VALUES 90 60 30 20 10 5 4 z 2
. 400"  AMRL ) o 0 1.62 2.8% 4.70 %.71 6.96 B.99
1000"  AMRL 0 0 0 1.87 3.59 6.45 B8.02 9.92 11.44
b
[. A-LEVEL ESA DIFFERENCES VS ANGLE
[ MAXIMUM AND MINIMUM VALUES—-AMRL
[
= A/C  ESA ANGLE IN DEGREES
3 HEIGHT VALUES 90 60 30 20 10 S 4 3 2
400"  MAX 0 ) 0 2.08 3.41 S.45 6.67 8.32 10.84
MIN o o 0 1.3%5 2.3% 3.89 4.70 S5.68 7.35
JOOO"  MAX o o 0 2.24 4.30 7.94 10.09 12.59 14.64
MIN 0 0 0 1.47 2.84 4.92 6.27 7.43 7.89
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In general, one can say that the relatively large values of
lateral attenuation observed at angles of below about 5 degrees can
largely be accounted for in terms of surface reflection effects.
However, at higher angles, the lateral attenuation observed experi-~
mentally is appreciably larger than can be accounted for by simple
F_ reflection effects.

g The lateral attenuation differences based on the experimental
AMRL data are considerably greater than those based on the theoretical
j ‘ model at all elevation angles. The A-level lateral attenuations for
both the theoretical and AMRL ESA data are consistently greater for
the aircraft height of 1000 ft. compared to 400 ft.*

Y

Comparison of the excess attenuation based on the experimental

Wﬁ,*
-

AMRL values show ESA values that are lower than the SAE curve for

angles greater than about 3 degrees, with the experimental values
falling approximately 2 dB below the SAE curve throughout most of the

angular range above 3 degrees.

n T Y —p——r—r—v vy
‘. i~ MR -
S S

*This can be explained, in large part, in terms of the greater changes
in flyover noise spectrum shape vs. elevation angle as flyover height
increases. A given elevation angle change involves greater distance
changes as flyover height increases. As discussed in Reference 4, the
greater distance changes reduce higher frequency levels more than the
mid- or low-frequency levels, hence result in somewhat greater A-level

Ty

changes for a given set of ESA spectrum values. 4
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The SAE curve represents an arbitrary averaging of data from a
large number of sources and includes results of measurements made
under varying circumstances and test arrangements. The data also
included results using different noise measures, including integrated
measures such as EPNL (effective perceived noise level) and SEL, as
well as maximum perceived noise levels and A-levels. In the develop-
ment of the SAE curve, it was noted that the lateral attenuation
curves developed by the Air Force from measured flyover data for mili-
tary aircraft (primarily in terms of SEL's) fell below the average SAE
curve. The current results are consistent with that earlier finding.
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5. RECOMMENDATIONS

The current NOISEMAP algorithms for handling the lateral attenua-
tion provide a relatively crude transition between air-to-ground and
ground-to-ground (f=0) conditions, as Figure 7 makes clear. On the
other hand, the SAE curve provides lateral attenuation that, for
elevation angles above about 3 or 4 degrees, is in excess of that
observed experimentally in the flyover noise measurements undertaken
by AMRL. Further, the SAE curve is tied to an arbitrary excess

attenuation curve that is not aircraft-dependent.

Recommendations for the over-ground attenuation model for
NOISEMAP (B=0) are discussed in reference 4. If it assumed that those
recommendations are carried out to the extent that any NOISEMAP excess
attenuation model will be noise spectrum dependent and hence vary with
distance, aircraft type and power setting, what this report should
consider is the transition between that excess attenuation curve (B=0)
and the lateral attenuation for elevation angles greater than zero.

It is believed that the AMRL experimental results provide a
reasonable basis for developing an improved transition model for
varying elevation angles. Hence, it is recommended that the shape of
the A-level lateral attenuation curve derived from the AMRL experi-
mental results (see Figure 7) be used as the basis for an improved
lateral attenuation transition curve. Assuming that the average
curves given in this report represent a reasonable sampling of noise
spectra for military aircraft, one can develop a generalized transi-
tion curve based on an average of the two curves shown in Figure 7.
Such a transition curve is shown in Figure 8, compared with the
current NOISEMAP transition.
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The curve of Figure 8 is based upon the following equation:

-1.20
Y = 0.397-0.01405 £ + 1.45 B
(2° < £ < 30°) (2)

and Y =1 (0° <B< 2°)

And, as in the current NOISEMAP and SAE models, Y is used as a
multiplier applied to the over-ground attenuation calculated for 2
at or near zero.

Note that the equation (2) does not modify the over-ground
attenuation until the calculated elevation angle exceeds two degrees.
This takes into account the lack of experimental data at very small

elevation angles (less than 2 degrees).

In comparison with the current NOISEMAP model, the transition
curve of Figure 8 provides less lateral attenuation between 2 and

5.7 degrees, and greater attenuation at angles between 5.7 and
30 degrees.

Two examples utilizing the curve of Figure 8 are presented in

Figure 9. This figure shows the lateral attenuation based on equation
(2) assuming that the excess attenuation (B=0) is a typical NOISEMAP
value for a lateral distance of 5000 ft. or is the maximum value given
by the SAE model (13.86 dB). 1In the latter case, the recommended
curve would provide lateral attenuation greater than the SAE
transition curve for elevation angles between zero and 3 degrees, and

less lateral attenuation for higher elevation angles.
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